
United States Postal Service

Web Tool Kit User’s Guide

A Technical Guide to

Address Informational

Application Programming Interfaces

Address Standardization
ZIP Code Lookup

City/State Lookup

Before implementing this API, the Administrative Guide for
Application Programming Interfaces must be read.

Version 2.2 (06/09/03)

USPS Web Tool Kit User’s Guide

To Our Customers
In the e-mail that accompanied this guide you received a password and user ID that will allow
you to begin sending calls to the “test server” when you are ready. Any additional
documentation or contact with you will be made through the contact person indicated on the
registration form.

If you require technical support, contact the USPS Internet Customer Care Center (ICCC). This
office is manned from 7:00AM to 11:00PM EST.

E-mail: icustomercare@usps.com

Telephone: 1-800-344-7779 (7:00AM to 11:00PM EST)

USPS Customer Commitment
The United States Postal Service fully understands the importance of providing information and
service anytime day or night to your Internet and e-commerce customers. For that reason, the
USPS is committed to providing 7 x 24 service from our API servers, 365 days a year.

Thank you for helping the U.S. Postal Service provide new Internet services to our shipping
customers.

Internet Shipping Solutions Team
U.S. Postal Service
475 L’Enfant Plaza, SW
Washington, DC 20260-2464

Trademarks
Express Mail, First-Class Mail, Global Priority Mail, Parcel Post, Parcel Select, Priority Mail,
and ZIP + 4 are registered trademarks of the U.S. Postal Service.

Delivery Confirmation, Global Express Guaranteed, Global Express Mail, GXG, International
Parcel Post, Priority Mail Global Guaranteed, Signature Confirmation, and ZIP Code are
trademarks of the U.S. Postal Service.

Microsoft, Visual Basic, and Word are registered trademarks of Microsoft Corporation.
Adobe Acrobat is a trademark of Adobe Systems Incorporated.

Copyright 2002 United States Postal Service

Address Informational APIs i

mailto:support@shippingapis.com

USPS Web Tool Kit User’s Guide

Table of Contents
Introduction to the Address Informational APIs1

User ID and Password Restrictions ... 2
Transaction Procedures for Address Standardization API3

Technical Steps ... 3
Step 1: Build the XML Request .. 3

“Canned” Test Requests ... 3
Valid Test Requests .. 3
Pre-Defined Error Requests .. 4

“Live” Request... 5
Visual Basic Request... 6

Steps 2 & 3: Make the Internet Connection and Send the XML Request 7
Using HTTP Connection DLL.. 7
Using WinInet.. 8

Step 4: Unpack the XML Response ... 9
Types of Responses ... 9
Using Visual Basic .. 9
Errors .. 10

Output .. 11
“Canned” Test Responses .. 11
“Live” Responses .. 14

XML Output Example .. 14
Transaction Procedures for ZIP Code Lookup API...............................15

Technical Steps ... 15
Step 1: Build the XML Request .. 15

“Canned” Test Requests ... 15
Valid Test Requests .. 15
Pre-Defined Error Requests .. 16

“Live” Request...17
Visual Basic Request... 18

Steps 2 & 3: Make the Internet Connection and Send the XML Request 19
Using HTTP Connection DLL.. 20
Using WinInet..20

Step 4: Unpack the XML Response ... 21
Types of Responses ... 21
Using Visual Basic .. 21
Errors .. 23

Output .. 24
“Canned” Test Responses .. 24
“Live” Responses .. 26

XML Output Example .. 26
Transaction Procedures for City/State Lookup API..............................28

Technical Steps ... 28
Step 1: Build the XML Request .. 28

Address Informational APIs ii

USPS Web Tool Kit User’s Guide

“Canned” Test Requests ... 28
Valid Test Requests .. 28
Pre-Defined Error Request .. 29

“Live” Request...29
Visual Basic Request... 30

Steps 2 & 3: Make the Internet Connection and Send the XML Request 31
Using HTTP Connection DLL.. 31
Using WinInet..31

Step 4: Unpack the XML Response ... 32
Types of Responses ... 33
Using Visual Basic .. 33
Errors .. 35

Output .. 35
“Canned” Test Responses .. 36
“Live” Responses .. 38

XML Output Example .. 38

Address Informational APIs iii

USPS Web Tool Kit User’s Guide

Introduction to the Address Informational APIs

There are three Address Informational APIs provided in this guide:

1. Address Standardization API. This API corrects errors in street addresses, including
abbreviations and missing information, and supplies ZIP Codes and ZIP Codes + 4. It
supports up to five lookups per transaction. By eliminating address errors, you will
improve overall package delivery service.

2. ZIP Code Lookup API. The ZIP Code Lookup API returns the ZIP Code and ZIP Code
+ 4 corresponding to the given address, city, and state (use USPS state abbreviations).
The ZIP Code Lookup API processes up to five lookups per request.

3. City/State Lookup API. The City/State Lookup API returns the city and state
corresponding to the given ZIP Code. The City/State Lookup API processes up to five
lookups per request.

As shown below, implementing USPS Shipping APIs requires a series of Administrative Steps.
The Administrative Guide for APIs, sent to you with this document, provides necessary
information and procedures prior to installation. The illustration also shows the Technical Steps
required to run XML transactions to either the test server or the production server, as well as the
Coding Process to be followed for each Technical Step. This document provides step-by-step
instructions for both the Technical Steps and Coding Process illustrated below.

Administrative Steps

1. Register

3. Run "Canned" Test from
Test Server

4. Call ICCC for Access to
Production Server

5. Run "Live" XML from
Production Server

Coding Process

Cut & Paste Code
from this PDF File

Use HTTP
Connection DLL or
another interface

Cut & Paste Code
from this PDF File

Cut & Paste Code
from this PDF File;
Use VB Example &
Decoding Example,

if necessary

2. Sign Licensing Agreement for API
Connector Code, if desired.

Technical Steps

1. Build XML
Request

2. Make Internet
Connection to

Server

4. Unpack XML
Response

3. Send XML
Request

Implementing these APIs requires experienced programmers who are familiar with Internet
and web site development tools and techniques. Before implementing this API, the
Administrative Guide for Application Programming Interfaces must be read.

Address Informational APIs 1

USPS Web Tool Kit User’s Guide

User ID and Password Restrictions

The user ID and password that you have received is only for the use of you or your company in
accordance with the Terms and Conditions of Use to which you agreed during the registration
process. This user ID and password is not to be shared with others outside your organization,
nor is it to be packaged, distributed, or sold to any other person or entity. Please refer to the
Terms and Conditions of Use Agreement for additional restrictions on the use of your user ID
and password, as well as this document and the APIs contained herein.

The documentation and sample code contained in the Web Tool Kit User Guide series may be
reused and/or distributed to your customers or affiliates to generate awareness, encourage web
tool use, or provide ease-of-use. However, it is your responsibility to ensure that your customers
do not use your password and user ID. Direct them to www.uspsprioritymail.com so that they
can register, agree to the Terms and Conditions of Use agreement, and receive their own unique
password and user ID.

Warning: If the U.S. Postal Service discovers use of the same user ID and password from more
than one web site, all users will be subject to immediate loss of access to the USPS server and
termination of the licenses granted under the Terms and Conditions of Use.

For more information regarding the USPS Web Tool Kit password and user ID policy, or for
questions regarding the distribution of documentation, send e-mail to icustomercare@usps.com.

Address Informational APIs 2

http://www.uspsprioritymail.com/
mailto:support@shippingapis.com

USPS Web Tool Kit User’s Guide

Transaction Procedures for Address Standardization API

The illustration below shows the transactional flow of information to and from the USPS
Address Standardization API server.

Address Standardization API Server

INPUTS
(via XML Request from
Customer to USPS)
Customer Name & Address

SERVER TASKS

Looks Up in Address Management System
Gets Correct Address
Builds XML Response

OUTPUTS
(via XML Response from
USPS to Customer)
Corrected Address

Technical Steps

Step 1: Build the XML Request

“Canned” Test Requests

For testing purposes, the only values in the test code in this section that you should change are
the “userid” and “password.” Enter the user ID and password you received in the registration e-
mail. All remaining code in the test scripts provided below must remain unchanged.

All of the test script code contained in this document can be cut and pasted for your use in testing
the software. To copy the test script code from this PDF file, click on the icon for “Text
Selector” and highlight the code. (The icon will look like

 or

depending on your vers
your test document.

Valid Test Requests
There are four valid req

Address Standardizatio
abc

ion of Adobe Acrobat.) You can then copy th

uests included in this procedure:

n API
 T

e code and paste it into

3

USPS Web Tool Kit User’s Guide

Valid Request #1
http://SERVERNAME/ShippingAPITest.dll?API=Verify&XML=<AddressValidateRequest%
20USERID="xxxxxxx"%20PASSWORD="xxxxxxx"><Address ID="0"><Address1></Address1>
<Address2>6406 Ivy Lane</Address2><City>Greenbelt</City><State>MD</State>
<Zip5></Zip5><Zip4></Zip4></Address></AddressValidateRequest>

Valid Request #2
http://SERVERNAME/ShippingAPITest.dll?API=Verify&XML=<AddressValidateRequest%
20USERID="xxxxxxx"%20PASSWORD="xxxxxxx"><Address ID="1"><Address1></Address1>
<Address2>8 Wildwood Drive</Address2><City>Old Lyme</City><State>
CT</State><Zip5>06371</Zip5><Zip4></Zip4></Address></AddressValidateRequest>

Valid Request #3
http://SERVERNAME/ShippingAPITest.dll?API=Verify&XML=<AddressValidateRequest%
20USERID="xxxxxxx"%20PASSWORD="xxxxxxx"><Address ID="2"><Address1></Address1>
<Address2>4411 Romlon Street</Address2><City>Beltsville</City><State>MD
</State><Zip5></Zip5><Zip4></Zip4></Address></AddressValidateRequest>

Valid Request #4
http://SERVERNAME/ShippingAPITest.dll?API=Verify&XML=<AddressValidateRequest%
20USERID="xxxxxxx"%20PASSWORD="xxxxxxx"><Address ID="3"><Address1></Address1>
<Address2>3527 Sharonwood Road Apt. 3C</Address2><City>Laurel</City><State>
MD</State><Zip5></Zip5><Zip4></Zip4></Address></AddressValidateRequest>

Pre-Defined Error Requests
There are four pre-defined errors included for this procedure. Be sure to note the request
numbers so you can match up the responses you will receive as provided in the “Canned” Test
Responses section.

Pre-defined Error Request #1: “The Address Could Not Be Found”

For testing purposes, this error will occur when the state input is “DE.”
http://SERVERNAME/ShippingAPITest.dll?API=Verify&XML=<AddressValidateRequest%
20USERID="xxxxxxx"%20PASSWORD="xxxxxxx"><Address ID="0"><Address1></Address1>
<Address2>3527 Sharonwood Road Apt. 3C</Address2><City>Wilmington</City>
<State>DE</State><Zip5></Zip5><Zip4></Zip4></Address></AddressValidateRequest
>

Pre-defined Error Request #2:
“Multiple Addresses Were Found and There Is No Default Available”

For testing purposes, this error will occur when the state input is “DC.”
http://SERVERNAME/ShippingAPITest.dll?API=Verify&XML=<AddressValidateRequest%
20USERID="xxxxxxx"%20PASSWORD="xxxxxxx"><Address ID="0"><Address1></Address1>
<Address2>1600 Pennsylvania Avenue</Address2><City>Washington</City><State>
DC</State><Zip5></Zip5><Zip4></Zip4></Address></AddressValidateRequest>

Pre-defined Error Request #3: “The State is Invalid”
This error will occur when the state input is “ZZ.”
http://SERVERNAME/ShippingAPITest.dll?API=Verify&XML=<AddressValidateRequest%
20USERID="xxxxxx"%20PASSWORD="xxxxxxx"><Address ID="0"><Address1></Address1>
<Address2>123 Main Street</Address2><City>Washington</City><State>ZZ</State>
<Zip5></Zip5><Zip4></Zip4></Address></AddressValidateRequest>

Address Standardization API 4

USPS Web Tool Kit User’s Guide

Pre-defined Error Request #4: “The City Is Invalid”
This error will occur when the state input is “NJ.”
http://SERVERNAME/ShippingAPITest.dll?API=Verify&XML=<AddressValidateRequest%
20USERID="xxxxxxx"%20PASSWORD="xxxxxxx"><Address ID="0"><Address1></Address1>
<Address2>123 Main Street</Address2><City>Trenton</City><State>NJ</State>
<Zip5></Zip5><Zip4></Zip4></Address></AddressValidateRequest>

“Live” Request

Refer to the “Canned” Test Requests section above for instructions on how to cut and paste the
sample code from this PDF file.

Remember that you are provided with a different server name to send “live” requests.
When building the XML request, pay particular attention to the order and case for tags.

The table below presents the required XML input tags for generating “Live” requests and the
restrictions on the values allowed. An error message will be returned if the tag does not contain
a value or if an incorrect value is entered. Also, be aware of the maximum character amounts
allowed for some tags. If the user enters more than those amounts, an error will not be
generated. The API will simply pass in the characters up to the maximum amount allowed and
disregard the rest. This is important since the resulting value could prevent delivery.

Developers: For sample code utilizing Perl and ASP, refer to the Domestic Rates
Calculator API and Track/Confirm API user’s guides.

Input XML Tag Values Allowed
Type of Request <AddressValidateRequest… Input tag exactly as presented.
User ID …USERID=”userid”… Use user ID provided with registration.
Password …PASSWORD=”password”> Use password provided with registration.
Address Verification
Number

<Address ID='#'> Up to five address verifications can be included
per transaction.

Name of Firm <FirmName> Providing the firm name tag is optional.
Maximum characters allowed: 38

Address Line 1 <Address1> Address Line 1 is used to provide an apartment
or suite number, if applicable. If not applicable,
include the open and close tag with no input.
Maximum characters allowed:38

Address Line 2 <Address2> Street address.
Maximum characters allowed: 38

City <City> Maximum characters allowed: 15
State <State> Maximum characters allowed: 2
ZIP Code <Zip5> Input tag exactly as presented, not all caps.

Maximum characters allowed: 5
ZIP Code + 4 <Zip4> Input tag exactly as presented, not all caps.

Maximum characters allowed: 4

The “Live” XML request should be in the form:

Address Standardization API 5

USPS Web Tool Kit User’s Guide

<AddressValidateRequest USERID="xxxxxxx" PASSWORD="xxxxxxxx">
<Address ID="0">
 <FirmName>XYZ Corp.</FirmName>

<Address1></Address1>
<Address2>6406 Ivy </Address2>
<City>Greenbelt</City>
<State>MD</State>
<Zip5></Zip5>
<Zip4></Zip4>

</Address>
</AddressValidateRequest>

Visual Basic Request
Using the Microsoft XML object model in Visual Basic, such a request can be built as shown
below. In this code sample, the data needed to build the XML is obtained from a form. The
<ServiceType> element is obtained from an option button control and the <ImageType> is from
a combo box control. All other fields are obtained from text box controls.
Dim xmlDoc As New DOMDocument
 Dim RequestLevel As IXMLDOMElement
 Dim AddressLevel As IXMLDOMElement
 Dim AddressElementLevel As IXMLDOMElement
 Dim t As Variant
 Dim i As Integer

 Set RequestLevel = xmlDoc.createElement("AddressValidateRequest")
 RequestLevel.setAttribute "USERID", "SOLClient"
 RequestLevel.setAttribute "PASSWORD", "mypassword"

 For i = 0 To ?

 Set AddressLevel = xmlDoc.createElement("Address")
 AddressLevel.setAttribute "ID", i
 Set AddressElementLevel = xmlDoc.createElement("FirmName")
 Set t = xmlDoc.createTextNode(txtFirm.Text)
 AddressElementLevel.appendChild (t)
 Call AddressLevel.appendChild(AddressElementLevel)

 Set AddressElementLevel = xmlDoc.createElement("Address1")
 Set t = xmlDoc.createTextNode(txtAddress1.Text)
 AddressElementLevel.appendChild (t)
 Call AddressLevel.appendChild(AddressElementLevel)

 Set AddressElementLevel = xmlDoc.createElement("Address2")
 Set t = xmlDoc.createTextNode(txtAddress2.Text)
 AddressElementLevel.appendChild (t)
 Call AddressLevel.appendChild(AddressElementLevel)

 Set AddressElementLevel = xmlDoc.createElement("City")
 Set t = xmlDoc.createTextNode(txtCity.Text)
 AddressElementLevel.appendChild (t)
 Call AddressLevel.appendChild(AddressElementLevel)

 Set AddressElementLevel = xmlDoc.createElement("State")
 Set t = xmlDoc.createTextNode(cmbState.Text)
 AddressElementLevel.appendChild (t)

Address Standardization API 6

USPS Web Tool Kit User’s Guide

 Call AddressLevel.appendChild(AddressElementLevel)

 Set AddressElementLevel = xmlDoc.createElement("Zip5")
 Set t = xmlDoc.createTextNode(txtZip5.Text)
 AddressElementLevel.appendChild (t)
 Call AddressLevel.appendChild(AddressElementLevel)

 Set AddressElementLevel = xmlDoc.createElement("Zip4")
 Set t = xmlDoc.createTextNode(txtZip4.Text)
 AddressElementLevel.appendChild (t)
 Call AddressLevel.appendChild(AddressElementLevel)

 Call RequestLevel.appendChild(AddressLevel)

 Next i

 Call xmlDoc.appendChild(RequestLevel)

Steps 2 & 3: Make the Internet Connection and Send the XML Request

These two steps are presented together to simplify things. The two steps actually involve four
separate functions:

1. Making the connection to the USPS Shipping API server (test or production server)
2. Sending the request (whether Visual Basic, Perl, ASP, or any other language)
3. Receiving the response from the API server
4. Closing the Internet connection

These steps are identical for sending “Canned” test requests or “Live” requests. Remember,
however, that you are provided with a different server name to send “live” requests.
This section provides two samples to make the Internet connection. This is not an all-inclusive
list. It simply represents the most common and easiest ways to make the Internet connection.

• Using the USPS-supplied HTTP Connection DLL

The HTTP Connection DLL is recommended for NT systems. This software, created
specifically for the USPS API implementation, provides e-tailers with a thread-safe sockets
interface to submit XML requests and receive XML responses from the API server.

• Using Microsoft’s WinInet

Although you can use the WinInet DLL to make the connection to the API server, it is not
recommended for server applications due to limitations in the DLL. It is recommended that
you either use the USPS-supplied HTTP Connection DLL or write your own sockets
interface that can be used to make multiple connections and will remain thread-safe.

Using HTTP Connection DLL

To obtain this code you must submit a Licensing Agreement. See the Administrative Guide for
APIs for the agreement.

Address Standardization API 7

USPS Web Tool Kit User’s Guide

Using WinInet

This sample code shows how to use Microsoft’s WinInet dll to make the Internet connection,
using either the “GET” or “POST” (necessary for requests over 2K in size) methods.
XMLSTRING represents the URL-encoded XML request and SERVERNAME indicates the
name of the USPS web site to which you are connecting. For more information on the Microsoft
WinInet product, go to http://msdn.microsoft.com/library/techart/msdn_vbhttp.htm.

Although you can use the WinInet dll to make the connection to the API server, it is not
recommended for server applications due to limitations in the dll. It is recommended that you
write a sockets interface that can be used to make multiple connections and will remain thread-
safe.
Dim hOpen As Long, hConnection As Long, hFile As Long, numread As Long
Dim File As String, xml As String, sHeader As String, htmlFile As String, tmp
As String * 2048
Dim bDoLoop As Boolean

File = "/ShippingAPI.dll?"
xml = "API=Verify&XML=" & XMLSTRING

hOpen = InternetOpen("", 1, vbNullString, vbNullString, 0)

hConnection = InternetConnect(hOpen, SERVERNAME, 0, _
 "", "", 3, 0, 0)

''''''''''''''''''''''''
'get
'File = File & xml
'hFile = HttpOpenRequest(hConnection, "GET", File, "HTTP/1.0", vbNullString,
0, 0, 0)
'OR
'''''''''''''''''''''''

'''''''''''''''''''''''
' post
hFile = HttpOpenRequest(hConnection, "POST", File, "HTTP/1.0", vbNullString,
0, 0, 0)

sHeader = "Content-Type: application/x-www-form-urlencoded" _
 & vbCrLf

Call HttpAddRequestHeaders(hFile, _
 sHeader, Len(sHeader), 0)
'''''''''''''''''''''''

bDoLoop = HttpSendRequest(hFile, vbNullString, 0, xml, Len(xml))

bDoLoop = True
 While bDoLoop
 tmp = vbNullString
 bDoLoop = InternetReadFile(hFile, tmp, Len(tmp), numread)
 If Not bDoLoop Then
 Exit Sub
 Else

Address Standardization API 8

http://msdn.microsoft.com/library/techart/msdn_vbhttp.htm

USPS Web Tool Kit User’s Guide

 htmlFile = htmlFile & Left$(tmp, numread)
 If Not CBool(numread) Then bDoLoop = False
 End If
 Wend

If hFile <> 0 Then InternetCloseHandle (hFile)
If hConnection <> 0 Then InternetCloseHandle (hConnection)
If hOpen <> 0 Then InternetCloseHandle (hOpen)

Step 4: Unpack the XML Response

This step is identical for unpacking “Canned” test responses or “Live” responses.

Types of Responses

When the USPS Shipping API returns a response, it will either return a successful response
document or an error document. Anytime you receive a response, you should check to see if the
document is <Error>. Refer to the Errors section.

Using Visual Basic

Using the Microsoft XML object model in Visual Basic, such responses can be unpacked as
follows:
Dim xmlDoc As New DOMDocument
Dim nodeList As IXMLDOMNodeList
Dim n As IXMLDOMNode, e As IXMLDOMNode, t As IXMLDOMNode
Dim i As Integer, j As Integer, k As Integer

xmlDoc.validateOnParse = False
xmlDoc.loadXML (xmlStr) 'Response
If xmldoc.documentElement.nodename=“Error” then 'Top-level Error
Set nodeList = xmlDoc.getElementsByTagName("Error")
Set n = nodeList.Item(0)
 For i = 0 To n.childNodes.length - 1
 Set e = n.childNodes.Item(i)
 Select Case e.nodeName
 Case "Source"
 Case "Number"
 Case "Description"
 lblAddressMessage.Caption =
 e.firstChild.nodeValue
 Case "HelpFile"
 Case "HelpContext"
 End Select
 Next i
Else 'no Top-level Error
 Set nodeList = xmlDoc.getElementsByTagName("Address")
 For i = 0 To nodeList.length - 1
 Set n = nodeList.Item(i)
 For j = 0 To n.childNodes.length - 1
 Set e = n.childNodes.Item(j)
 If e.nodeName = "Error" Then 'Lower-level error
 For k = 0 To e.childNodes.length - 1

Address Standardization API 9

USPS Web Tool Kit User’s Guide

 Set t = e.childNodes.Item(k)
 Select Case t.nodeName
 Case "Source"
 Case "Number"
 Case "Description"
 lblAddressMessage(i).Caption =
 t.firstChild.nodeValue
 Case "HelpFile"
 Case "HelpContext"
 End Select
 Next k
 Else 'No error in Package
 Select Case e.nodeName
 Case "Address1"
 txtAddress1(i).Text =
 e.firstChild.nodeValue
 Case "Address2"
 txtAddress2(i).Text =
 e.firstChild.nodeValue
 Case "City"
 txtCity(i).Text =
 e.firstChild.nodeValue
 Case "State"
 txtState(i).Text =
 e.firstChild.nodeValue
 Case "Zip5"
 txtZip5(i).Text =
 e.firstChild.nodeValue
 Case "Zip4"
 txtZip4(i).Text =
 e.firstChild.nodeValue
 Case "ReturnText"
 txtReturntext(i).Text =
 e.firstChild.nodeValue
 End Select
 End If
 Next j
 Next i
End If

Errors

Error conditions are handled at the main XML document level. For APIs that can handle
multiple transactions, the error conditions for requests for multiple responses to be returned
together are handled at the response level. For example: an API developer sends a request for
rates for two packages. If the addresses are non-existent, an “Error document” is returned to the
user. On the other hand, if the address for the first package is acceptable but not the second, the
response document contains the information for the first address, but under the XML tag for the
second address there is an error tag.

Error documents follow the Visual Basic error standards and have following format:

Address Standardization API 10

USPS Web Tool Kit User’s Guide

<Error>
<Number></Number>
<Source></Source>
<Description></Description>
<HelpFile></HelpFile>
<HelpContext></HelpContext>

</Error>

where:

• Number = the error number generated by the API server
• Source = the component and interface that generated the error on the API server
• Description = the error description
• HelpFile = [reserved]
• HelpContext = [reserved]

Errors that are further down in the hierarchy also follow the above format.

Output

After following Technical Step 4 and unpacking the XML response, you will have the output
from your request. This section describes the different outputs resulting from “Canned” test
requests and “Live” requests. Both types of requests result in an XML response with the
following tags:
Output XML Tag Comments
Type of Response <AddressValidateResponse> -
Address Verification
Number

<Address ID='#'> -

Name of Firm <FirmName> If provided in request.
Address Line 1 <Address1> -
Address Line 2 <Address2> -
City <City> If the city name is greater than 14

characters, the city abbreviation is
returned.

State <State> -
ZIP Code <Zip5> -
ZIP Code + 4 <Zip4> -
Message when multiple
addresses found

<ReturnText> This output is only returned when the
address entered results in multiple
locations being found by the Shipping
API server, but a default address exists.
The text of the message will read:
“Default address: The address you
entered was found but more information
is needed (such as an apartment, suite,
or box number) to match to a specific
address.”

“Canned” Test Responses

For your test to be successful, the following responses should be returned verbatim. If any
values were changes in your request, the following default error will occur:

Address Standardization API 11

USPS Web Tool Kit User’s Guide

<?xml version="1.0"?>
<AddressValidateResponse>

<Address ID="0">
<Error>
<Number>-2147219040</Number>
<Source>SOLServerTest;SOLServerTest.CallAddressDll</Source>
<Description>This Information has not been included in this Test
Server.</Description>
<HelpFile></HelpFile>
<HelpContext></HelpContext>
</Error>

</Address>
</AddressValidateResponse>

Although the input may be valid, the response will still raise this error, because those particular
values have not been included in this test server. Refer to the Errors section for an explanation
of any other returned errors.

Response to Valid Test Request #1
<?xml version="1.0"?>
<AddressValidateResponse>

<Address ID="0">
<Address2>6406 IVY LN</Address2>
<City>GREENBELT</City>
<State>MD</State>
<Zip5>20770</Zip5>
<Zip4>1440</Zip4>

</Address>
</AddressValidateResponse>

Response to Valid Test Request #2
<?xml version="1.0"?>
<AddressValidateResponse>

<Address ID="1">
<Address2>8 WILDWOOD DR</Address2>
<City>OLD LYME</City>
<State>CT</State>
<Zip5>06371</Zip5>
<Zip4>1844</Zip4>

</Address>
</AddressValidateResponse>

Response to Valid Test Request #3
<?xml version="1.0"?>
<AddressValidateResponse>

<Address ID="2">
<Address2>4411 ROMLON ST</Address2>
<City>BELTSVILLE</City>
<State>MD</State>
<Zip5>20705</Zip5>
<Zip4>2425</Zip4>

</Address>
</AddressValidateResponse>

Address Standardization API 12

USPS Web Tool Kit User’s Guide

Response to Valid Test Request #4
<?xml version="1.0"?>
<AddressValidateResponse>

<Address ID="3">
<Address2>3527 SHARONWOOD RD APT 3C</Address2>
<City>LAUREL</City>
<State>MD</State>
<Zip5>20724</Zip5>
<Zip4>5920</Zip4>

</Address>
</AddressValidateResponse>

Response to Pre-defined Error Request #1: “The Address Could Not Be Found”
<?xml version="1.0"?>
<AddressValidateResponse>

<Address ID="0">
<Error>
<Number>-2147219401</Number>
<Source>SOLServerTest;SOLServerTest.CallAddressDll</Source>
<Description>That address could not be found.</Description>
<HelpFile></HelpFile>
<HelpContext></HelpContext>
</Error>

</Address>
</AddressValidateResponse>

Response to Pre-defined Error Request #2:
“Multiple Addresses Were Found and There Is No Default Available”

<?xml version="1.0"?>
<AddressValidateResponse>

<Address ID="0">
<Error>
<Number>-2147219403</Number>
<Source>SOLServerTest;SOLServerTest.CallAddressDll</Source>
<Description>Multiple responses found. No default
address.</Description>
<HelpFile></HelpFile>
<HelpContext></HelpContext>
</Error>

</Address>
</AddressValidateResponse>

Response to Pre-defined Error Request #3: “The State is Invalid”
<?xml version="1.0"?>
<AddressValidateResponse>

<Address ID="0">
<Error>
<Number>-2147219402</Number>
<Source>SOLServerTest;SOLServerTest.CallAddressDll</Source>
<Description>That State is not valid.</Description>
<HelpFile></HelpFile>
<HelpContext></HelpContext>
</Error>
</Address>

</AddressValidateResponse>

Address Standardization API 13

USPS Web Tool Kit User’s Guide

Response to Pre-defined Error Request #4: “The City is Invalid”
<?xml version="1.0"?>
<AddressValidateResponse>

<Address ID="0">
<Error>
<Number>-2147219400</Number>
<Source>SOLServerTest;SOLServerTest.CallAddressDll</Source>
<Description>That is not a valid city.</Description>
<HelpFile></HelpFile>
<HelpContext></HelpContext>
</Error>
</Address>

</AddressValidateResponse>

“Live” Responses

XML Output Example

<AddressValidateResponse>

<Address ID="0">
<FirmName>XYZ Corp.</FirmName>
<Address2>6406 IVY LN</Address2>
<City>GREENBELT</City>
<State>MD</State>
<Zip5>20770</Zip5>
<Zip4>1440</Zip4>

</Address>
</AddressValidateResponse>

Address Standardization API 14

USPS Web Tool Kit User’s Guide

Transaction Procedures for ZIP Code Lookup API

The illustration below shows the transactional flow of information to and from the USPS ZIP
Code Lookup API server.

ZIP Code Lookup API Server

INPUTS
(via XML Request from
Customer to USPS)
Address

SERVER TASKS

Looks Up in Address Management System
Gets ZIP Code
Builds XML Response

OUTPUTS
(via XML Response from
USPS to Customer)
Address
ZIP Code
ZIP Code +4

Technical Steps

Step 1: Build the XML Request

“Canned” Test Requests

For testing purposes, the only values in the test code in this section that you should change are
the “userid” and “password.” Enter the user ID and password you received in the registration e-
mail. All remaining code in the test scripts provided below must remain unchanged.

All of the test script code contained in this document can be cut and pasted for your use in testing
the software. To copy the test script code from this PDF file, click on the icon for “Text
Selector” and highlight the code. (The icon will look like

 or

depending on your vers
your test document.

Valid Test Requests
There are four valid req

ZIP Code Lookup API
abc

ion of Adobe Acrobat.) You can then copy th

uests included in this procedure:
 T

e code and paste it into

15

USPS Web Tool Kit User’s Guide

Valid Test Request #1
http://SERVERNAME/ShippingAPITest.dll?API=ZipCodeLookup&XML=<ZipCodeLookupReq
uest%20USERID="xxxxxxx"%20PASSWORD="xxxxxxx"><Address ID="0"><Address1>
</Address1><Address2>6406 Ivy Lane</Address2><City>Greenbelt</City><State>
MD</State></Address></ZipCodeLookupRequest>

Valid Test Request #2
http://SERVERNAME/ShippingAPITest.dll?API=Verify&XML=<ZipCodeLookupRequest%20
USERID="xxxxxxx"%20PASSWORD="xxxxxxx"><Address ID="1"><Address1></Address1>
<Address2>8 Wildwood Drive</Address2><City>Old Lyme</City><State>CT</State>
<Zip5>06371</Zip5><Zip4></Zip4></Address></ZipCodeLookupRequest>

Valid Test Request #3
http://SERVERNAME/ShippingAPITest.dll?API=Verify&XML=<ZipCodeLookupRequest%20
USERID="xxxxxxx"%20PASSWORD="xxxxxxx"><Address ID="2"><Address1></Address1>
<Address2>4411 Romlon Street</Address2><City>Beltsville</City><State>MD
</State><Zip5></Zip5><Zip4></Zip4></Address></ZipCodeLookupRequest>

Valid Test Request #4
http://SERVERNAME/ShippingAPITest.dll?API=Verify&XML=<ZipCodeLookupRequest%20
USERID="xxxxxxx"%20PASSWORD="xxxxxx"><Address ID="3"><Address1></Address1>
<Address2>3527 Sharonwood Road Apt. 3C</Address2><City>Laurel</City><State>MD
</State><Zip5></Zip5><Zip4></Zip4></Address></ZipCodeLookupRequest>

Pre-Defined Error Requests
There are four pre-defined errors included for this procedure. Be sure to note the request
numbers so you can match up the responses you will receive as provided in the “Canned” Test
Responses section.

Pre-defined Error Request #1: “The Address Could Not Be Found”

For testing purposes, this error will occur when the state input is “DE.”
http://SERVERNAME/ShippingAPITest.dll?API=Verify&XML=<ZipCodeLookupRequest%20
USERID="xxxxxx"%20PASSWORD="xxxxxxx"><Address ID="0"><Address1></Address1>
<Address2>3527 Sharonwood Road Apt. 3C</Address2><City>Wilmington</City>
<State>DE</State><Zip5></Zip5><Zip4></Zip4></Address></ZipCodeLookupRequest>

Pre-defined Error Request #2:
“Multiple Addresses Were Found and There Is No Default Available”

For testing purposes, this error will occur when the state input is “DC.”
http://SERVERNAME/ShippingAPITest.dll?API=Verify&XML=<ZipCodeLookupRequest%20
USERID="xxxxxxx"%20PASSWORD="xxxxxxx"><Address ID="0"><Address1></Address1>
<Address2>1600 Pennsylvania Avenue</Address2><City>Washington</City><State>DC
</State><Zip5></Zip5><Zip4></Zip4></Address></ZipCodeLookupRequest>

Pre-defined Error Request #3: “The State is Invalid”
This error will occur when the state input is “ZZ.”
http://SERVERNAME/ShippingAPITest.dll?API=Verify&XML=<ZipCodeLookupRequest%20
USERID="xxxxxxx"%20PASSWORD="xxxxxxx"><Address ID="0"><Address1></Address1>
<Address2>123 Main Street</Address2><City>Washington</City><State>ZZ</State>
<Zip5></Zip5><Zip4></Zip4></Address></ZipCodeLookupRequest>

ZIP Code Lookup API 16

USPS Web Tool Kit User’s Guide

Pre-defined Error Request #4: “The City Is Invalid”
This error will occur when the state input is "NJ."
http://SERVERNAME/ShippingAPITest.dll?API=Verify&XML=<ZipCodeLookupRequest%20
USERID="xxxxxxx"%20PASSWORD="xxxxxxx"><Address ID="0"><Address1></Address1>
<Address2>123 Main Street</Address2><City>Trenton</City><State>NJ</State>
<Zip5></Zip5><Zip4></Zip4></Address></ZipCodeLookupRequest>

“Live” Request

Refer to the “Canned” Test Requests section above for instructions on how to cut and paste the
sample code from this PDF file.

Remember that you are provided with a different server name to send “live” requests.
When building the XML request, pay particular attention to the order and case for tags.

The table below presents the required XML input tags for generating “Live” requests and the
restrictions on the values allowed. An error message will be returned if the tag does not contain
a value or if an incorrect value is entered. Also, be aware of the maximum character amounts
allowed for some tags. If the user enters more than those amounts, an error will not be
generated. The API will simply pass in the characters up to the maximum amount allowed and
disregard the rest. This is important since the resulting value could prevent delivery.

Developers: For sample code utilizing Perl and ASP, refer to the Domestic Rates
Calculator API and Track/Confirm API user’s guides.

Input XML Tag Values Allowed
Type of Request <ZipCodeLookupRequest… Input tag exactly as presented.
User ID …USERID=”userid”… Use user ID provided with registration.
Password …PASSWORD=”password”> Use password provided with registration.
Address Lookup
Number

<Address ID='#'> Up to five address verifications can be included per
transaction.

Name of Firm <FirmName> Providing the firm name tag is optional.
Maximum characters allowed: 38.

Address Line 1 <Address1> Address Line 1 is used to provide an apartment or
suite number, if applicable. If not applicable, include
the open and close tag with no input.
Maximum characters allowed: 38.

Address Line 2 <Address2> This tag is required for this API.
Maximum characters allowed: 38.

City <City> Maximum characters allowed: 15.
This tag is required for this API.

State <State> Maximum characters allowed: 2
This tag is required for this API.

The “Live” XML request should be in the form:

ZIP Code Lookup API 17

USPS Web Tool Kit User’s Guide

<ZipCodeLookupRequest USERID=”xxxxxxxx” PASSWORD=”xxxxxxxx”>
<Address ID='0'>

<FirmName></FirmName>
<Address1>Suite #</Address1>
<Address2>Street Address</Address2>
<City></City>
<State></State>

</Address>
<Address ID='1'>

<FirmName></FirmName>
<Address1>Apt/Suite No</Address1>
<Address2>Street Address</Address2>
<City></City>
<State></State>

</Address>
</ZipCodeLookupRequest>

Visual Basic Request
Using the Microsoft XML object model in Visual Basic, such a request can be built as shown
below. In this code sample, the data needed to build the XML is obtained from a form. The
<ServiceType> element is obtained from an option button control and the <ImageType> is from
a combo box control. All other fields are obtained from text box controls.
Dim oXMLDocument As DOMDocument
 Dim oRequestLevel As IXMLDOMElement
 Dim oAddressLevel As IXMLDOMElement
 Dim oAddressElementLevel As IXMLDOMElement

 ' Build the XML Request

 ' Create a new XML document
 Set oXMLDocument = New DOMDocument

 ' Build the top-level (request)
 Set oRequestLevel =
 oXMLDocument.createElement("ZipCodeLookupRequest")
 oRequestLevel.setAttribute "USERID", "MyUserId"
 oRequestLevel.setAttribute "PASSWORD", "MyPassword"

 ' Add one or more Address levels
 Set oAddressLevel = oXMLDocument.createElement("Address")
 oAddressLevel.setAttribute "ID", "0"
 oRequestLevel.appendChild oAddressLevel

 ' Address1
 Set oAddressElementLevel =
 oXMLDocument.createElement("Address1")

 oAddressElementLevel.appendChild
 oXMLDocument.createTextNode("")
 oAddressLevel.appendChild oAddressElementLevel

 ' Address2
 Set oAddressElementLevel =
 oXMLDocument.createElement("Address2")
 oAddressElementLevel.appendChild
 oXMLDocument.createTextNode("123 Main Street ")

ZIP Code Lookup API 18

USPS Web Tool Kit User’s Guide

 oAddressLevel.appendChild oAddressElementLevel

 ' City
 Set oAddressElementLevel =
 oXMLDocument.createElement("City")
 oAddressElementLevel.appendChild
 oXMLDocument.createTextNode("Somewhere")
 oAddressLevel.appendChild oAddressElementLevel

 ' State
 Set oAddressElementLevel =
 oXMLDocument.createElement("State")
 oAddressElementLevel.appendChild
 oXMLDocument.createTextNode("MD")
 oAddressLevel.appendChild oAddressElementLevel

 ' Append address level to request level
 oRequestLevel.appendChild oAddressLevel

 ' Append request level to document
 oXMLDocument.appendChild oRequestLevel

Steps 2 & 3: Make the Internet Connection and Send the XML Request

These two steps are presented together to simplify things. The two steps actually involve four
separate functions:

1. Making the connection to the USPS Shipping API server (test or production server)
2. Sending the request (whether Visual Basic, Perl, ASP, or any other language)
3. Receiving the response from the API server
4. Closing the Internet connection

These steps are identical for sending “Canned” test requests or “Live” requests. Remember,
however, that you are provided with a different server name to send “live” requests.

This section provides two samples to make the Internet connection. This is not an all-inclusive
list. It simply represents the most common and easiest ways to make the Internet connection.

• Using the USPS-supplied HTTP Connection DLL

The HTTP Connection DLL is recommended for NT systems. This software, created
specifically for the USPS API implementation, provides e-tailers with a thread-safe sockets
interface to submit XML requests and receive XML responses from the API server.

• Using Microsoft’s WinInet

Although you can use the WinInet DLL to make the connection to the API server, it is not
recommended for server applications due to limitations in the DLL. It is recommended that
you either use the USPS-supplied HTTP Connection DLL or write your own sockets
interface that can be used to make multiple connections and will remain thread-safe.

ZIP Code Lookup API 19

USPS Web Tool Kit User’s Guide

Using HTTP Connection DLL

To obtain this code you must submit a Licensing Agreement. See the Administrative Guide for
APIs for the agreement.

Using WinInet

This sample code shows how to use Microsoft’s WinInet dll to make the Internet connection,
using either the “GET” or “POST” (necessary for requests over 2K in size) methods.
XMLSTRING represents the URL-encoded XML request and SERVERNAME indicates the
name of the USPS web site to which you are connecting. For more information on the Microsoft
WinInet product, go to http://msdn.microsoft.com/library/techart/msdn_vbhttp.htm.

Although you can use the WinInet dll to make the connection to the API server, it is not
recommended for server applications due to limitations in the dll. It is recommended that you
write a sockets interface that can be used to make multiple connections and will remain thread-
safe.
Dim hOpen As Long, hConnection As Long, hFile As Long, numread As Long
Dim File As String, xml As String, sHeader As String, htmlFile As String, tmp
As String * 2048
Dim bDoLoop As Boolean

File = "/ShippingAPI.dll?"
xml = "API=ZipCodeLookup&XML=" & XMLSTRING

hOpen = InternetOpen("", 1, vbNullString, vbNullString, 0)

hConnection = InternetConnect(hOpen, SERVERNAME, 0, _
 "", "", 3, 0, 0)

''''''''''''''''''''''''
'get
'File = File & xml
'hFile = HttpOpenRequest(hConnection, "GET", File, "HTTP/1.0", vbNullString,
0, 0, 0)
'OR
'''''''''''''''''''''''

'''''''''''''''''''''''
' post
hFile = HttpOpenRequest(hConnection, "POST", File, "HTTP/1.0", vbNullString,
0, 0, 0)

sHeader = "Content-Type: application/x-www-form-urlencoded" _
 & vbCrLf

Call HttpAddRequestHeaders(hFile, _
 sHeader, Len(sHeader), 0)
'''''''''''''''''''''''

bDoLoop = HttpSendRequest(hFile, vbNullString, 0, xml, Len(xml))

bDoLoop = True
 While bDoLoop

ZIP Code Lookup API 20

http://msdn.microsoft.com/library/techart/msdn_vbhttp.htm

USPS Web Tool Kit User’s Guide

 tmp = vbNullString
 bDoLoop = InternetReadFile(hFile, tmp, Len(tmp), numread)
 If Not bDoLoop Then
 Exit Sub
 Else
 htmlFile = htmlFile & Left$(tmp, numread)
 If Not CBool(numread) Then bDoLoop = False
 End If
 Wend

If hFile <> 0 Then InternetCloseHandle (hFile)
If hConnection <> 0 Then InternetCloseHandle (hConnection)
If hOpen <> 0 Then InternetCloseHandle (hOpen)

Step 4: Unpack the XML Response

This step is identical for unpacking “Canned” test responses or “Live” responses.

Types of Responses

When the USPS Shipping API returns a response, it will either return a successful response
document or an error document. Anytime you receive a response, you should check to see if the
document is <Error>. Refer to the Errors section.

Using Visual Basic

Using the Microsoft XML object model in Visual Basic, such responses can be unpacked as
follows:
Const sXML_RESPONSE As String = "<?xml version='1.0'?>" & _
 "<ZipCodeLookupResponse>" & _
 "<Address ID='0'>" & _
 "<Address2></Address2>" & _
 "<City></City>" & _
 "<State></State>" & _
 "<Zip5></Zip5>" & _
 "<Zip4></Zip4>" & _
 "</Address>" & _
 "</ZipCodeLookupResponse>"

 Dim xmlDoc As DOMDocument
 Dim nodeList As IXMLDOMNodeList
 Dim n As IXMLDOMNode, e As IXMLDOMNode, t As IXMLDOMNode
 Dim i As Integer, j As Integer, k As Integer

 Dim sZip5 As String
 Dim sZip4 As String

 Dim lErrorNumber As Long
 Dim sDescription As String
 Dim sSource As String
 Dim sHelpFile As String
 Dim sHelpContextId As String

ZIP Code Lookup API 21

USPS Web Tool Kit User’s Guide

 Set xmlDoc = New DOMDocument
 xmlDoc.validateOnParse = False
 xmlDoc.loadXML (sXML_RESPONSE) 'Response
 If xmlDoc.documentElement.nodeName = "Error" Then 'Top-level
 Error
 Set nodeList = xmlDoc.getElementsByTagName("Error")
 Call UnpackErrorNode(nodeList.Item(0), lErrorNumber,
 sDescription, sSource, sHelpFile, sHelpContextId)
 ' Add code here to display the error
 Else 'no Top-level Error
 Set nodeList = xmlDoc.getElementsByTagName("Address")
 For i = 0 To nodeList.length - 1
 Set n = nodeList.Item(i)
 For j = 0 To n.childNodes.length - 1
 Set e = n.childNodes.Item(j)
 If e.nodeName = "Error" Then 'Lower-level error
 Call UnpackErrorNode(e, lErrorNumber,
 sDescription, sSource, sHelpFile, sHelpContextId)
 ' Add code here to display the error
 Else 'No error in Package
 Select Case e.nodeName
 Case "Zip5"
 If e.hasChildNodes Then
 sZip5 = e.firstChild.nodeValue
 End If
 Case "Zip4"
 If e.hasChildNodes Then
 sZip4 = e.firstChild.nodeValue
 End If
 End Select
 End If
 Next j
 Next i
 End If

The UnpackErrorNode common subroutine that is referred to in the above code examples
unpacks an XML Error node into individual variables.
' Input:
' oNode - XML Error Node
' Output:
' lErrorNumber - Error Number
' sDescription - Error Description
' sSource - Error Source
' sHelpFile - Help File Name
' sHelpContextId - Help Context Id

Private Sub UnpackErrorNode(ByRef oNode As IXMLDOMNode, ByRef lErrorNumber As
Long, ByRef sDescription As String, ByRef sSource As String, ByRef sHelpFile
As String, ByRef sHelpContextId As String)

 Dim oNodeError As IXMLDOMNode

 Dim lIndex As Long

 lErrorNumber = 0
 sSource = ""

ZIP Code Lookup API 22

USPS Web Tool Kit User’s Guide

 sDescription = ""
 sHelpFile = ""
 sHelpContextId = ""

 For lIndex = 0 To oNode.childNodes.length - 1
 Set oNodeError = oNode.childNodes.Item(lIndex)
 Select Case oNodeError.nodeName
 Case "Source"
 If oNodeError.hasChildNodes Then
 sSource = oNodeError.firstChild.nodeValue
 End If
 Case "Number"
 If oNodeError.hasChildNodes Then
 lErrorNumber = oNodeError.firstChild.nodeValue
 End If
 Case "Description"
 If oNodeError.hasChildNodes Then
 sDescription = oNodeError.firstChild.nodeValue
 End If
 Case "HelpFile"
 If oNodeError.hasChildNodes Then
 sHelpFile = oNodeError.firstChild.nodeValue
 End If
 Case "HelpContext"
 If oNodeError.hasChildNodes Then
 sHelpContextId =
 oNodeError.firstChild.nodeValue
 End If
 End Select
 Next
End Sub

Errors

Error conditions are handled at the main XML document level. For APIs that can handle
multiple transactions, the error conditions for requests for multiple responses to be returned
together are handled at the response level. For example: an API developer sends a request for
rates for two packages. If the addresses are non-existent, an “Error document” is returned to the
user. On the other hand, if the address for the first package is acceptable but not the second, the
response document contains the information for the first address, but under the XML tag for the
second address there is an error tag.

Error documents follow the Visual Basic error standards and have following format:
<ZipCodeLookupResponse>

<Address ID="0">
 <Error>
 <Number></Number>
 <Source></Source>
 <Description></Description>
 <HelpFile></HelpFile>
 <HelpContext></HelpContext>
 </Address>
</ZipCodeLookupResponse>

where:

ZIP Code Lookup API 23

USPS Web Tool Kit User’s Guide

• Number = the error number generated by the API server
• Source = the component and interface that generated the error on the API server
• Description = the error description
• HelpFile = [reserved]
• HelpContext = [reserved]

Errors that are further down in the hierarchy also follow the above format.

Output

After following Technical Step 4 and unpacking the XML response, you will have the output
from your request. This section describes the different outputs resulting from “Canned” test
requests and “Live” requests. Both types of requests result in an XML response with the
following tags:
Output XML Tag Comments
Type of Response <ZipCodeLookupResponse> -
Address ID Number <Address ID='#'> -
Name of Firm <FirmName> Will be returned only if tag was included in

the XML request.
Address Line 1 <Address1> -
Address Line 2 <Address2> -
City <City> If the city name is greater than 14

characters, the city abbreviation is
returned.

State <State> -
ZIP Code <Zip5> -
ZIP Code + 4 <Zip4> -

“Canned” Test Responses

For your test to be successful, the following responses should be returned verbatim. If any
values were changes in your request, the following default error will occur:
<?xml version="1.0"?>
<AddressValidateResponse>

<Address ID="0">
<Error>
<Number>-2147219040</Number>
<Source>SOLServerTest;SOLServerTest.CallAddressDll</Source>
<Description>This Information has not been included in this Test
Server.</Description>
<HelpFile></HelpFile>
<HelpContext></HelpContext>
</Error>

</Address>
</AddressValidateResponse>

Although the input may be valid, the response will still raise this error, because those particular
values have not been included in this test server. Refer to the Errors section for an explanation
of any other returned errors.

ZIP Code Lookup API 24

USPS Web Tool Kit User’s Guide

Response to Valid Test Request #1
<?xml version="1.0"?>
<AddressValidateResponse>

<Address ID="0">
<Address2>6406 IVY LN</Address2>
<City>GREENBELT</City>
<State>MD</State>
<Zip5>20770</Zip5>
<Zip4>1440</Zip4>

</Address>
</AddressValidateResponse>

Response to Valid Test Request #2
<?xml version="1.0"?>
<AddressValidateResponse>

<Address ID="1">
<Address2>8 WILDWOOD DR</Address2>
<City>OLD LYME</City>
<State>CT</State>
<Zip5>06371</Zip5>
<Zip4>1844</Zip4>

</Address>
</AddressValidateResponse>

Response to Valid Test Request #3
<?xml version="1.0"?>
<AddressValidateResponse>

<Address ID="2">
<Address2>4411 ROMLON ST</Address2>
<City>BELTSVILLE</City>
<State>MD</State>
<Zip5>20705</Zip5>
<Zip4>2425</Zip4>

</Address>
</AddressValidateResponse>

Response to Valid Test Request #4
<?xml version="1.0"?>
<AddressValidateResponse>

<Address ID="3">
<Address2>3527 SHARONWOOD RD APT 3C</Address2>
<City>LAUREL</City>
<State>MD</State>
<Zip5>20724</Zip5>
<Zip4>5920</Zip4>
</Address>

</AddressValidateResponse>

Response to Pre-defined Error Request #1: “The Address Could Not Be Found”
<?xml version="1.0"?>
<AddressValidateResponse>

<Address ID="0">
<Error>
<Number>-2147219401</Number>
<Source>SOLServerTest;SOLServerTest.CallAddressDll</Source>

ZIP Code Lookup API 25

USPS Web Tool Kit User’s Guide

<Description>That address could not be found.</Description>
<HelpFile></HelpFile>
<HelpContext></HelpContext>
</Error>

</Address>
</AddressValidateResponse>

Response to Pre-defined Error Request #2:
“Multiple Addresses Were Found and There Is No Default Available”

<?xml version="1.0"?>
<AddressValidateResponse>

<Address ID="0">
<Error>
<Number>-2147219403</Number>
<Source>SOLServerTest;SOLServerTest.CallAddressDll</Source>
<Description>Multiple responses found. No default
address.</Description>
<HelpFile></HelpFile>
<HelpContext></HelpContext>
</Error>

</Address>
</AddressValidateResponse>

Response to Pre-defined Error Request #3: “The State is Invalid”
<?xml version="1.0"?>
<AddressValidateResponse>

<Address ID="0">
<Error>
<Number>-2147219402</Number>
<Source>SOLServerTest;SOLServerTest.CallAddressDll</Source>
<Description>That State is not valid.</Description>
<HelpFile></HelpFile>
<HelpContext></HelpContext>
</Error>

</Address>
</AddressValidateResponse>

Response to Pre-defined Error Request #4: “The City is Invalid”
<?xml version="1.0"?>
<AddressValidateResponse>

<Address ID="0">
<Error>
<Number>-2147219400</Number>
<Source>SOLServerTest;SOLServerTest.CallAddressDll</Source>
<Description>That is not a valid city.</Description>
<HelpFile></HelpFile>
<HelpContext></HelpContext>
</Error>

</Address>
</AddressValidateResponse>

 “Live” Responses

XML Output Example
<ZipCodeLookupResponse>

ZIP Code Lookup API 26

USPS Web Tool Kit User’s Guide

<Address ID="0">
 <FirmName></FirmName>

<Address1></Address1>
<Address2></Address2>
<City></City>
<State></State>
<Zip5></Zip5>
<Zip4></Zip4>

</Address>
<Address ID="1">

<FirmName></FirmName>
<Address1></Address1>
<Address2></Address2>
<City></City>
<State></State>
<Zip5></Zip5>
<Zip4></Zip4>

</Address>
</ZipCodeLookupResponse>

ZIP Code Lookup API 27

USPS Web Tool Kit User’s Guide

Transaction Procedures for City/State Lookup API

The illustration below shows the transactional flow of information to and from the USPS
City/State Lookup API server.

City/State Lookup API Server

INPUTS
(via XML Request from
Customer to USPS)
ZIP Code

SERVER TASKS

Looks Up in Address Management System
Gets City & State
Builds XML Response

OUTPUTS
(via XML Response from
USPS to Customer)
City
State

Technical Steps

Step 1: Build the XML Request

“Canned” Test Requests

For testing purposes, the only values in the test code in this section that you should change are
the “userid” and “password.” Enter the user ID and password you received in the registration e-
mail. All remaining code in the test scripts provided below must remain unchanged.

All of the test script code contained in this document can be cut and pasted for your use in testing
the software. To copy the test script code from this PDF file, click on the icon for “Text
Selector” and highlight the code. (The icon will look like

 or

depending on your vers
your test document.

Valid Test Requests
There are five valid req

City/State Lookup API
abc

ion of Adobe Acrobat.) You can then copy th

uests included in this procedure:
 T

e code and paste it into

28

USPS Web Tool Kit User’s Guide

Valid Test Request #1
http://SERVERNAME/ShippingAPITest.dll?API=CityStateLookup&XML=<CityStateLooku
pRequest%20USERID="xxxxxxx"%20PASSWORD="xxxxxxx"><ZipCode ID= "0">
<Zip5>90210</Zip5></ZipCode></CityStateLookupRequest>

Valid Test Request #2
http://SERVERNAME/ShippingAPITest.dll?API=CityStateLookup&XML=<CityStateLooku
pRequest%20USERID="xxxxxxx"%20PASSWORD="xxxxxxx"><ZipCode ID= "0">
<Zip5>20770</Zip5></ZipCode></CityStateLookupRequest>

Valid Test Request #3
http://SERVERNAME/ShippingAPITest.dll?API=CityStateLookup&XML=<CityStateLooku
pRequest%20USERID="xxxxxxx"%20PASSWORD="xxxxxxx"><ZipCode ID= "0">
<Zip5>21113</Zip5></ZipCode></CityStateLookupRequest>

Valid Test Request #4
http://SERVERNAME/ShippingAPITest.dll?API=CityStateLookup&XML=<CityStateLooku
pRequest%20USERID="xxxxxxx"%20PASSWORD="xxxxxxx"><ZipCode ID= "0">
<Zip5>21032</Zip5></ZipCode></CityStateLookupRequest>

Valid Test Request #5
http://SERVERNAME/ShippingAPITest.dll?API=CityStateLookup&XML=<CityStateLooku
pRequest%20USERID="xxxxxxx"%20PASSWORD="xxxxxxx"><ZipCode ID= "0">
<Zip5>21117</Zip5></ZipCode></CityStateLookupRequest>

Pre-Defined Error Request
Invalid ZIP Code

This error will occur if the ZIP Code input is “99999.”
http://SERVERNAME/ShippingAPITest.dll?API=CityStateLookup&XML=<CityStateLooku
pRequest%20USERID="xxxxxxx"%20PASSWORD="xxxxxxx"><ZipCode ID= "0">
<Zip5>99999</Zip5></ZipCode></CityStateLookupRequest>

“Live” Request

Refer to the “Canned” Test Requests section above for instructions on how to cut and paste the
sample code from this PDF file.

Remember that you are provided with a different server name to send “live” requests.

When building the XML request, pay particular attention to the order and case for tags.

The table below presents the required XML input tags for generating “Live” requests and the
restrictions on the values allowed. An error message will be returned if the tag does not contain
a value or if an incorrect value is entered. Also, be aware of the maximum character amounts
allowed for some tags. If the user enters more than those amounts, an error will not be
generated. The API will simply pass in the characters up to the maximum amount allowed and
disregard the rest. This is important since the resulting value could prevent delivery.

Developers: For sample code utilizing Perl and ASP, refer to the Domestic Rates
Calculator API and Track/Confirm API user’s guides.

City/State Lookup API 29

USPS Web Tool Kit User’s Guide

Input XML Tag Values Allowed
Type of Request <CityStateLookupRequest… Input tag exactly as presented.
User ID …USERID=”userid”… Use user ID provided with registration.
Password …PASSWORD=”password”> Use password provided with

registration.
ZIP Code Lookup Number <ZipCode ID='#'> Up to five ZIP Codes can be included

per transaction.
ZIP Code of City or State <Zip5> Input tag exactly as presented, not all

caps. Maximum characters allowed: 5

The “Live” XML request should be in the form:
<CityStateLookupRequest USERID=”xxxxxxxx” PASSWORD=”xxxxxxxx”>

<ZipCode ID="0">
<Zip5>90210</Zip5>

</ZipCode>
<ZipCode ID="1">

<Zip5>20770</Zip5>
</ZipCode>

</CityStateLookupRequest>

Visual Basic Request
Using the Microsoft XML object model in Visual Basic, such a request can be built as shown
below. In this code sample, the data needed to build the XML is obtained from a form. The
<ServiceType> element is obtained from an option button control and the <ImageType> is from
a combo box control. All other fields are obtained from text box controls.
Dim oXMLDocument As DOMDocument
 Dim oRequestLevel As IXMLDOMElement
 Dim oLookupLevel As IXMLDOMElement
 Dim oLookupElementLevel As IXMLDOMElement

 ' Build the XML Request

 ' Create a new XML document
 Set oXMLDocument = New DOMDocument

 ' Build the top-level (request)
 Set oRequestLevel =
 oXMLDocument.createElement("ExpressMailRequest")
 oRequestLevel.setAttribute "USERID", "MyUserId"
 oRequestLevel.setAttribute "PASSWORD", "MyPassword"

 ' Add one or more Address levels
 Set oLookupLevel = oXMLDocument.createElement("ZipCode")
 oLookupLevel.setAttribute "ID", "0"
 oRequestLevel.appendChild oLookupLevel

 ' Zip Code
 Set oLookupElementLevel =
 oXMLDocument.createElement("Zip5")
 oLookupElementLevel.appendChild
 oXMLDocument.createTextNode("90210")
 oLookupLevel.appendChild oLookupElementLevel

 ' Append lookup level to request

City/State Lookup API 30

USPS Web Tool Kit User’s Guide

 oRequestLevel.appendChild oLookupLevel

 ' Append request level to document
 oXMLDocument.appendChild oRequestLevel

Steps 2 & 3: Make the Internet Connection and Send the XML Request

These two steps are presented together to simplify things. The two steps actually involve four
separate functions:

1. Making the connection to the USPS Shipping API server (test or production server)
2. Sending the request (whether Visual Basic, Perl, ASP, or any other language)
3. Receiving the response from the API server
4. Closing the Internet connection

These steps are identical for sending “Canned” test requests or “Live” requests. Remember,
however, that you are provided with a different server name to send “live” requests.

This section provides two samples to make the Internet connection. This is not an all-inclusive
list. It simply represents the most common and easiest ways to make the Internet connection.

• Using the USPS-supplied HTTP Connection DLL

The HTTP Connection DLL is recommended for NT systems. This software, created
specifically for the USPS API implementation, provides e-tailers with a thread-safe sockets
interface to submit XML requests and receive XML responses from the API server.

• Using Microsoft’s WinInet

Although you can use the WinInet DLL to make the connection to the API server, it is not
recommended for server applications due to limitations in the DLL. It is recommended that
you either use the USPS-supplied HTTP Connection DLL or write your own sockets
interface that can be used to make multiple connections and will remain thread-safe.

Using HTTP Connection DLL

To obtain this code you must submit a Licensing Agreement. See the Administrative Guide for
APIs for the agreement.

Using WinInet

This sample code shows how to use Microsoft’s WinInet dll to make the Internet connection,
using either the “GET” or “POST” (necessary for requests over 2K in size) methods.
XMLSTRING represents the URL-encoded XML request and SERVERNAME indicates the
name of the USPS web site to which you are connecting. For more information on the Microsoft
WinInet product, go to http://msdn.microsoft.com/library/techart/msdn_vbhttp.htm.

Although you can use the WinInet dll to make the connection to the API server, it is not
recommended for server applications due to limitations in the dll. It is recommended that you
write a sockets interface that can be used to make multiple connections and will remain thread-
safe.
Dim hOpen As Long, hConnection As Long, hFile As Long, numread As Long

City/State Lookup API 31

http://msdn.microsoft.com/library/techart/msdn_vbhttp.htm

USPS Web Tool Kit User’s Guide

Dim File As String, xml As String, sHeader As String, htmlFile As String, tmp
As String * 2048
Dim bDoLoop As Boolean

File = "/ShippingAPI.dll?"
xml = "API=CityStateLookup&XML=" & XMLSTRING

hOpen = InternetOpen("", 1, vbNullString, vbNullString, 0)

hConnection = InternetConnect(hOpen, SERVERNAME, 0, _
 "", "", 3, 0, 0)

''''''''''''''''''''''''
'get
'File = File & xml
'hFile = HttpOpenRequest(hConnection, "GET", File, "HTTP/1.0", vbNullString,
0, 0, 0)
'OR
'''''''''''''''''''''''

'''''''''''''''''''''''
' post
hFile = HttpOpenRequest(hConnection, "POST", File, "HTTP/1.0", vbNullString,
0, 0, 0)

sHeader = "Content-Type: application/x-www-form-urlencoded" _
 & vbCrLf

Call HttpAddRequestHeaders(hFile, _
 sHeader, Len(sHeader), 0)
'''''''''''''''''''''''

bDoLoop = HttpSendRequest(hFile, vbNullString, 0, xml, Len(xml))

bDoLoop = True
 While bDoLoop
 tmp = vbNullString
 bDoLoop = InternetReadFile(hFile, tmp, Len(tmp), numread)
 If Not bDoLoop Then
 Exit Sub
 Else
 htmlFile = htmlFile & Left$(tmp, numread)
 If Not CBool(numread) Then bDoLoop = False
 End If
 Wend

If hFile <> 0 Then InternetCloseHandle (hFile)
If hConnection <> 0 Then InternetCloseHandle (hConnection)
If hOpen <> 0 Then InternetCloseHandle (hOpen)

Step 4: Unpack the XML Response

This step is identical for unpacking “Canned” test responses or “Live” responses.

City/State Lookup API 32

USPS Web Tool Kit User’s Guide

Types of Responses

When the USPS Shipping API returns a response, it will either return a successful response
document or an error document. Anytime you receive a response, you should check to see if the
document is <Error>. Refer to the Errors section.

Using Visual Basic

Using the Microsoft XML object model in Visual Basic, such responses can be unpacked as
follows:
Const sXML_RESPONSE As String = "<?xml version='1.0'?>" & _
 "<CityStateLookupResponse>" & _
 "<ZipCode ID='0'>" & _
 "<Zip5></Zip5>" & _
 "<City></City>" & _
 "<State></State>" & _
 "</ZipCode>" & _
 "</CityStateLookupResponse>"

 Dim xmlDoc As DOMDocument
 Dim nodeList As IXMLDOMNodeList
 Dim n As IXMLDOMNode, e As IXMLDOMNode, t As IXMLDOMNode
 Dim i As Integer, j As Integer, k As Integer

 Dim sCity As String
 Dim sState As String

 Dim lErrorNumber As Long
 Dim sDescription As String
 Dim sSource As String
 Dim sHelpFile As String
 Dim sHelpContextId As String

 Set xmlDoc = New DOMDocument
 xmlDoc.validateOnParse = False
 xmlDoc.loadXML (sXML_RESPONSE) 'Response
 If xmlDoc.documentElement.nodeName = "Error" Then 'Top-level
 Error
 Set nodeList = xmlDoc.getElementsByTagName("Error")
 Call UnpackErrorNode(nodeList.Item(0), lErrorNumber,
 sDescription, sSource, sHelpFile, sHelpContextId)
 ' Add code here to display the error
 Else 'no Top-level Error
 Set nodeList = xmlDoc.getElementsByTagName("ZipCode")
 For i = 0 To nodeList.length - 1
 Set n = nodeList.Item(i)
 For j = 0 To n.childNodes.length - 1
 Set e = n.childNodes.Item(j)
 If e.nodeName = "Error" Then 'Lower-level error
 Call UnpackErrorNode(e, lErrorNumber,
 sDescription, sSource, sHelpFile, sHelpContextId)
 ' Add code here to display the error
 Else 'No error in Package
 Select Case e.nodeName

City/State Lookup API 33

USPS Web Tool Kit User’s Guide

 Case "City"
 If e.hasChildNodes Then
 sCity = e.firstChild.nodeValue
 End If
 Case "State"
 If e.hasChildNodes Then
 sState = e.firstChild.nodeValue
 End If
 End Select
 End If
 Next j
 Next i
 End If

The UnpackErrorNode common subroutine that is referred to in the above code examples
unpacks an XML Error node into individual variables.
' Input:
' oNode - XML Error Node
' Output:
' lErrorNumber - Error Number
' sDescription - Error Description
' sSource - Error Source
' sHelpFile - Help File Name
' sHelpContextId - Help Context Id

Private Sub UnpackErrorNode(ByRef oNode As IXMLDOMNode, ByRef lErrorNumber As
Long, ByRef sDescription As String, ByRef sSource As String, ByRef sHelpFile
As String, ByRef sHelpContextId As String)

 Dim oNodeError As IXMLDOMNode

 Dim lIndex As Long

 lErrorNumber = 0
 sSource = ""
 sDescription = ""
 sHelpFile = ""
 sHelpContextId = ""

 For lIndex = 0 To oNode.childNodes.length - 1
 Set oNodeError = oNode.childNodes.Item(lIndex)
 Select Case oNodeError.nodeName
 Case "Source"
 If oNodeError.hasChildNodes Then
 sSource = oNodeError.firstChild.nodeValue
 End If
 Case "Number"
 If oNodeError.hasChildNodes Then
 lErrorNumber = oNodeError.firstChild.nodeValue
 End If
 Case "Description"
 If oNodeError.hasChildNodes Then
 sDescription = oNodeError.firstChild.nodeValue
 End If
 Case "HelpFile"
 If oNodeError.hasChildNodes Then

City/State Lookup API 34

USPS Web Tool Kit User’s Guide

 sHelpFile = oNodeError.firstChild.nodeValue
 End If
 Case "HelpContext"
 If oNodeError.hasChildNodes Then
 sHelpContextId =
 oNodeError.firstChild.nodeValue
 End If
 End Select
 Next
End Sub

Errors

Error conditions are handled at the main XML document level. For APIs that can handle
multiple transactions, the error conditions for requests for multiple responses to be returned
together are handled at the response level. For example: an API developer sends a request for
rates for two packages. If the addresses are non-existent, an “Error document” is returned to the
user. On the other hand, if the address for the first package is acceptable but not the second, the
response document contains the information for the first address, but under the XML tag for the
second address there is an error tag.

Error documents follow the Visual Basic error standards and have following format:
<CityStateLookupResponse>

<ZipCode ID="0">
 <Error>
 <Number></Number>
 <Source></Source>
 <Description></Description>
 <HelpFile></HelpFile>
 <HelpContext></HelpContext>
 </ZipCode>
</CityStateLookupResponse>

where:

• Number = the error number generated by the API server
• Source = the component and interface that generated the error on the API server
• Description = the error description
• HelpFile = [reserved]
• HelpContext = [reserved]

Errors that are further down in the hierarchy also follow the above format.

Output

After following Technical Step 4 and unpacking the XML response, you will have the output
from your request. This section describes the different outputs resulting from “Canned” test
requests and “Live” requests. Both types of requests result in an XML response with the
following tags:

City/State Lookup API 35

USPS Web Tool Kit User’s Guide

Output XML Tag
Type of Response <CityStateLookupResponse…

ZIP Code Lookup Number <ZipCode ID='#'>

ZIP Code of City or State <Zip5>
City for Requested ZIP Code <City>
State for requested ZIP Code <State>

“Canned” Test Responses

For your test to be successful, the following responses should be returned verbatim. If any
values were changes in your request, the following default error will occur:
<?xml version="1.0"?>
<CityStateLookupResponse>

<ZipCode ID="0">
<Error>
<Number>-2147219040</Number>
<Source>SOLServerTest;SOLServerTest.CallZipCodeDll</Source>
<Description>This Information has not been included in this Test
Server.</Description>
<HelpFile></HelpFile>
<HelpContext></HelpContext>
</Error>
</ZipCode>

</CityStateLookupResponse>

Although the input may be valid, the response will still raise this error, because those particular
values have not been included in this test server. Refer to the Errors section for an explanation
of any other returned errors.

Response to Valid Test Request #1
<?xml version="1.0"?>
<CityStateLookupResponse>
<ZipCode ID="0">

<Zip5>90210</Zip5>
<City>BEVERLY HILLS</City>
<State>CA</State>

</ZipCode>
</CityStateLookupResponse>

Response to Valid Test Request #2
<?xml version="1.0"?>
<CityStateLookupResponse>
<ZipCode ID="0">

<Zip5>20770</Zip5>
<City>GREENBELT</City>
<State>MD</State>

</ZipCode>
</CityStateLookupResponse>

City/State Lookup API 36

USPS Web Tool Kit User’s Guide

Response to Valid Test Request #3
<?xml version="1.0"?>
<CityStateLookupResponse>
<ZipCode ID="0">

<Zip5>21113</Zip5>
<City>ODENTON</City>
<State>MD</State>

</ZipCode>
</CityStateLookupResponse>

Response to Valid Test Request #4
<?xml version="1.0"?>
<CityStateLookupResponse>
<ZipCode ID="0">

<Zip5>21032</Zip5>
<City>CROWNSVILLE</City>
<State>MD</State>

</ZipCode>
</CityStateLookupResponse>

Response to Valid Test Request #5
<?xml version="1.0"?>
<CityStateLookupResponse>

<ZipCode ID="0">
<Zip5>21117</Zip5>
<City>OWINGS MILLS</City>
<State>MD</State>

</ZipCode>
</CityStateLookupResponse>

Response to Pre-defined Error Request: “Invalid ZIP Code”
<?xml version="1.0"?>
<CityStateLookupResponse>

<ZipCode ID="0">
<Error>
<Number>-2147219403</Number>
<Source>SOLServerTest;SOLServerTest.CallZipCodeDll</Source>
<Description>Invalid Zip Code.</Description>
<HelpFile></HelpFile>
<HelpContext></HelpContext>
</Error>

</ZipCode>
</CityStateLookupResponse>

City/State Lookup API 37

USPS Web Tool Kit User’s Guide

“Live” Responses

XML Output Example
<CityStateLookupResponse>

<ZipCode ID="0">
<Zip5>90210</Zip5>
<City>BEVERLY HILLS</City>
<State>CA</State>

</ZipCode>
<ZipCode ID="1">

<Zip5>20770</Zip5>
<City>GREENBELT</City>
<State>MD</State>

</ZipCode>
</CityStateLookupResponse>

City/State Lookup API 38

	Introduction to the Address Informational APIs
	User ID and Password Restrictions

	Transaction Procedures for Address Standardization API
	Technical Steps
	Step 1: Build the XML Request
	“Canned” Test Requests
	Valid Test Requests
	
	
	
	Valid Request #1
	Valid Request #2
	Valid Request #3
	Valid Request #4

	Pre-Defined Error Requests

	“Live” Request
	Visual Basic Request

	Steps 2 & 3: Make the Internet Connection and Send the XML Request
	Using HTTP Connection DLL
	Using WinInet

	Step 4: Unpack the XML Response
	Types of Responses
	Using Visual Basic
	Errors

	Output
	“Canned” Test Responses
	
	
	
	
	Response to Valid Test Request #1
	Response to Valid Test Request #2
	Response to Valid Test Request #3
	Response to Valid Test Request #4

	“Live” Responses
	XML Output Example

	Transaction Procedures for ZIP Code Lookup API
	Technical Steps
	Step 1: Build the XML Request
	“Canned” Test Requests
	Valid Test Requests
	
	
	
	Valid Test Request #1
	Valid Test Request #2
	Valid Test Request #3
	Valid Test Request #4

	Pre-Defined Error Requests

	“Live” Request
	Visual Basic Request

	Steps 2 & 3: Make the Internet Connection and Send the XML Request
	Using HTTP Connection DLL
	Using WinInet

	Step 4: Unpack the XML Response
	Types of Responses
	Using Visual Basic
	Errors

	Output
	“Canned” Test Responses
	
	
	
	
	Response to Valid Test Request #1
	Response to Valid Test Request #2
	Response to Valid Test Request #3
	Response to Valid Test Request #4

	“Live” Responses
	XML Output Example

	Transaction Procedures for City/State Lookup API
	Technical Steps
	Step 1: Build the XML Request
	“Canned” Test Requests
	Valid Test Requests
	
	
	
	Valid Test Request #1
	Valid Test Request #2
	Valid Test Request #3
	Valid Test Request #4
	Valid Test Request #5

	Pre-Defined Error Request

	“Live” Request
	Visual Basic Request

	Steps 2 & 3: Make the Internet Connection and Send the XML Request
	Using HTTP Connection DLL
	Using WinInet

	Step 4: Unpack the XML Response
	Types of Responses
	Using Visual Basic
	Errors

	Output
	“Canned” Test Responses
	
	
	
	
	Response to Valid Test Request #1
	Response to Valid Test Request #2
	Response to Valid Test Request #3
	Response to Valid Test Request #4
	Response to Valid Test Request #5

	“Live” Responses
	XML Output Example

